Spectral Overflow Compensation in Flow Cytometry

Cora Chadick

EMBL - Monterotondo

What is Compensation?

What is Compensation?

Simply, it corrects for spillover/overflow of one fluorochrome's emission into the detector/channel meant for another

Specifications	
For Use With (Equipment):	Fluorescence Microscope, Flow Cytometer
Cell Permeability:	Cell-Impermeant
Sub-Cellular Localization:	Nucleus, Nucleic Acids
Form:	Solid
Solubility:	DMSO (Dimethylsulfoxide)
Label or Dye:	7-AAD
Product Size:	1 mg
Detection Method:	Fluorescent
Flow Cytometer Laser Lines:	488
Excitation/Emission (nm):	546/647
Shipping Condition:	Room Temperature

Expectation?

Host	Rat
Isotype	IgG2b, kappa
Reactivity	Human, Mouse
Conjugate	PE
Laser	Blue Laser, Green Laser, Yellow-Green Laser
Emit	575 nm
Excite	488 - 561 nm
Reported Applications	Flow Cytometric Analysis

Reality

Auto and Manual Compensation

Manual Compensation

 $\overline{PE_A} = \overline{PE_O - (7AAD_O)} (\%_S)$

	PE-A		PE-A
Population	Mean	Population	Mean
- 7-AAD	459	- 7-AAD	393
+ 7-AAD	1,657	+ 7-AAD	397

Manual Compensation for APC on 8 Color Panel

An experiment with 8 colors will require 56 instances of manual compensation

Auto Comp Values

Fluorochrome	- % Fluorochrome	Spectral Overlap
* FITC	APC-Cy7	0.00
• PE	APC-Cy7	0.00
 Pacific Blue 	APC-Cy7	0.28
€ Qdot 605	APC-Cy7	0.00
♠ AmCyan	APC-Cy7	0.19
€ QDot 705	APC-Cy7	0.84
€ APC	APC-Cy7	6.55
€ APC-Cy7	FITC	0.08
€ PE	FITC	0.00
 Pacific Blue 	FITC	0.34
€ Qdot 605	FITC	0.08
♠ AmCyan	FITC	6.85
• QDot 705	FITC	0.08
♠ APC	FITC	0.00
• APC-Cy7	PE	0.00
• FITC	PE	1.54
 Pacific Blue 	PE	0.50
• Qdot 605	PE	1.27
♠ AmCyan	PE	1.12
€ QDot 705	PE	1.62
♠ APC	PE	0.49
♠ APC-Cy7	Pacific Blue	0.07
• FITC	Pacific Blue	0.63
e PE	Pacific Blue	0.00
• Qdot 605	Pacific Blue	2.18
♠ AmCyan	Pacific Blue	343.61
€ QDot 705	Pacific Blue	2.90
* APC	Pacific Blue	0.14

▼ Show All	FITC_Alexa 4	PE-A	PE-Cy55-A	PE-Cy7-A	CD3 CD14 LL	APC_Ax 647-A	APC-Ax700-A
▼ FITC_Alexa 488-A		16.64	0.98	0.15	0.00	0.02	0.00
V PE-A	0.74		11.69	2.35	0.01	0.07	0.06
▼ PE-Cy55-A	0.03	0.03		37.43	0.00	4.90	76.53
▼ PE-Cy7-A	0.08	0.85	0.29		0.00	8.61	10.91
CD3 CD14 Live_Dead-A	0.54	0.18	0.00	0.00		0.00	0.00
APC_Ax 647-A	0.01	0.00	0.27	0.08	0.00		
✓ APC-Ax700-A	0.02	0.01	0.29	0.24	0.00	0.26	
▼ APC-H7-A	0.08	0.00	0.01	1.71	0.04	5.15	17.93

$$PE_A = PE_O - (7AAD_O) (\%_S)$$

$$\%_S = - (PE_A - PE_O) / 7AAD_O$$

Sample w/only 7-AAD Membrane Impermiable DNA Dye

Spillover of 7-AAD into PE channel $%_S = -(139 - 1337) / 15785$ = 7.59%

Rare cells lost w/out compensation applied

Fully Compensated

Reasons to Perform Compensation

- •Multicolor (> 3 color panels) flow experiments too may parameters to track to guarantee accurate analysis and/or cell sorting or simply too time consuming
- •Low surface antigen density

Reasons to Perform Compensation

- •Multicolor (> 3 color panels) flow experiments too may parameters to track to guarantee accurate analysis and/or cell sorting or simply too time consuming
- •Low surface antigen density
- Reporting MFI (mean/median fluorescence intensity)

•Reporting MFI (mean/median fluorescence intensity)

Reasons to Perform Compensation

- •Multicolor (> 3 color panels) flow experiments too may parameters to track to guarantee accurate analysis and/or cell sorting or simply too time consuming
- •Low surface antigen density
- Reporting MFI (mean/median fluorescence intensity)
- *Aesthetically pleasing figures for publication or supplemental data that will not make other flow cytometrists question your experimental methods

3 Rules of Compensation

- 1. Single-color controls must be as bright or brighter than samples that compensation will be applied to
- 2. Single color compensation controls must use the same fluorochromes as are used in the experiment
- 3. Each individual control must have the same background/autofluorescence

```
CH1_A = CH1_O - (CH2_O) (\%_S 2 \rightarrow 1) - (CH3_O) (\%_S 3 \rightarrow 1) ... - (CHn_O) (\%_S n \rightarrow 1)
```

1. Single-color controls must be as bright or brighter than samples that compensation will be applied to

$$PE_A = PE_O - (7AAD_O) (\%_S)$$

$$\%_S = - (PE_A - PE_O) / 7AAD_O$$

Spillover of 7-AAD into PE channel % = 7.59% w/specific gate = 8.51% w/broad gate

1. Single-color controls must be as bright or brighter than samples that compensation will be applied to

- 1. Single-color controls must be as bright or brighter than samples that compensation will be applied to
 - Fluorophore emission probability will not change

T. 1D2

2. Single color compensation controls must use the same fluorochromes as are used in the experiment

$$CH1_A = CH1_O - (CH2_O) (\%_S 2 \rightarrow 1) - (CH3_O) (\%_S 3 \rightarrow 1) ... - (CHn_O) (\%_S n \rightarrow 1)$$

Note:

Compensation controls and samples using tandem fluorophores must use the same lot ID

2. Single

3. Each individual control must have the same background/autofluorescence

Avoid Many Problems and Simply Use Compensation Beads

Beads and the 3 Rules

- 1. Single-color controls must be as bright or brighter than samples that compensation will be applied to
 - Tend to be very bright and stain well with antibody
 - On rare occasion they will be more dim but bright beads are sold and a mix of cells for some controls and beads for other controls can be used
- 2. Single color compensation controls must use the same fluorochromes as are used in the experiment
 - Use same antibody on sample and control beads
 - *Note: not all species available
- 3. Each individual control must have the same background/autofluorescence
 - Compensation bead kits always contain unstained beads or can be purchased separately
 - Some cell types have very high autofluorescence and so it will not be possible to keep beads and sample on scale with matching detector voltage gain settings

$$CH1_A = CH1_O - (CH2_O) (\%_S 2 \rightarrow 1) - (CH3_O) (\%_S 3 \rightarrow 1) ... - (CHn_O) (\%_S n \rightarrow 1)$$

Final Note:

NEVER change laser voltage or detector gain/voltage after setting compensation controls