Cell Sorting

An overview

Marcus Eich

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Possible applications

- RNA isolation, Single cell qPCR
- Protein isolation
- Discrimination of transfected cells (e.g. GFP)
- Single cell cloning
- Synchronization
- (Stem) Cell transplantation

• . . .

Cytometer basics

by Klaus Hexel

Principle of cell sorters

"Cuvette"

"Jet in Air"

Principle of cell sorters

"Cuvette"

Principle of cell sorters

"Cuvette"

4/21/2016 Marcus Eich, Steffen Schmitt

The nozzles

Nozzle diameter/3 → biggest cell size for sorting
 Nozzle usage → depends on downstream assay

Stream & Drop Delay

How to set up the stream

- Set stream to a stable drop1 position having a constant gap by modulation of the phase and amplitude.
- Define drop delay under these constant conditions.

Drop Delay

Distance from interrogation point to drop1 position

Gap .

Drop1

18.2 🛢

32.6 🚔

217 216 12 12

Ampl:

Freq:

Gap:

Drop 1:

👔 100 micron 🛛 🔀

Stream

Droplet characteristics

Droplet size

Nozzle/ pressure	Volume flow rate V	Current velocity v	Droplet size V
70 µm/ 70 <u>psi</u>	95,0 <u>µL</u>	24,7 $\frac{m}{s}$ (88,9 $\frac{km}{h}$)	(f = 87,0 kHz) 1,1 nL
85 μm/ 45 <u>psi</u>	118,8 <u>µL</u>	$20,9\frac{m}{s}(75,4\frac{km}{h})$	(f = 47,7 kHz) 2,5 nL
100 µm/ 20 psi	101,0 <u>µL</u>	$12,9\frac{m}{s}(46,3\frac{km}{h})$	(f = 28,2 kHz) 3,2 nL

Approximate droplet count per tube

Nozzle/ pressure	1,5 mL	5,0 mL	15 mL	per mL
70 µm/ 70 psi	1 363 637	4 545 454	13 636 363	~900 000
85 μm/ 45 <u>psi</u>	600 000	2 000 000	6 000 000	~400 000
100 µm/ 20 psi	468 750	1 562 500	4 687 500	~310 000

Calculation by Tobias Rubner

Distributions of cells in stream

In reality there is no equal distribution of particles.

Under this condition even rare particles could be separated without problems from other events.

A random distribution is reality. Therefore, it becomes difficult to find rare events completely free of unwanted companions.

Max. sort speed with 70 µM

That means for a 0.1% population \rightarrow 2x 10⁶ cells / d

Possible targets

- 5 ml FACS tubes
- 1.5 ml tubes
- 15 ml tubes
- 6-well plates
- 24-well plates
- 96- well plates
- 384-well plates
- Glas slides
- Continuous cells
- Specific cell number

- \rightarrow 4 populations
- \rightarrow 4 populations
- \rightarrow 2 populations

Limitations

Time $\uparrow \rightarrow$ Flowrate \downarrow

What is the aim of the sort?

Before cell sorting some considerations sould to be made:

- Which downstream assay is planned?
- What is the desired number of cells?
- Is high purity an issue?
- How may cells do you have to start with?
- What is the percentage of cells of interest?
- Is pre-enrichment or depletion (MACS, Ficoll, etc.) possible?

Calculation of the yield

10% cells of interest are in the sort gate100.000 cells are analysed10.000 cells could have been sorted9.000 cells were sorted into the tube

Yield is 90%

Mostly: 70% - 80% of the sort counts

Reason:

- Cells die and get fragmented → Cell sorting is a very stressful process for the cell
- Cells stick to the tube \rightarrow Material of target is important
- Sample processing after sorting

Why does the cell sorter not detect all cells, which were counted after harvesting?

 Loss of cells during sample preparation before sorting: Centrifugation, Transfer, Washing, Errors during counting

Predefined Sort options

Sort precision mode:

- Yield → low purity depending on the flow rate
- Purity → low yield depending on the flow rate
- Single Cell \rightarrow highest purity, very low yield

→ Determined by **sort masks**

- There are 3 types of sort masks, which in combination define the sort precision modes:
 - Yield mask
 - Purity mask
 - Phase mask

- Every drop is virtually divided in 32 segments.
- A cell can be located in one or more ogf these segments
- The relative position of the cell inside the drop influences the sort decision.

	Yield Mask			
Sort envelope	Determinination of number	r of sorted drops, Non-target c	ells are not considered	
0	Only the calculated drop is sorted	sort	sort	
16	If the cell lies at The border of the drop, 2 drops are sorted sort	♦ 8 ♦ 8 Sort sort sort	sort	
32	Always 2 drops are sorted 16 16 16 t sort sort	$16 \begin{array}{c} \bullet \\ 16 \end{array} \text{sort} \\ 16 \end{array} \text{sort}$		

	Purity Mask			
Sort envelope	Control for particles in	neighboring drop, Non-target o	cells are considered	
0	No coincidence: Cell is sorted regardless the presence of an unwanted cell	sort	sort	
16	Cells in the neighboring drop cause an abort (coincidence)	no sort	sort	
32	Cells in the neighboring drop cause an abort (coincidence) 16 no sort 16	no sort	Non-Target cells located in the same drop like (sort envelope 16/32)	

4/21/2016 Marcus Eich, Steffen Schmitt

	Phase Mask			
Sort envelope	Cell position inside a drop dete	ermines the sort decision, Non-targ	get cells are not considered	
0	Position of a cell inside a drop has no influence of sort decision	sort	sort	
16	If cell is in the middle of the drop, drop is sort sorted $\$$ 8	no sort	no sort	
32	No cell is sorted, because it is always in the phase mask 16 16 10 10 10 10 10 10 10 10 10 10	no sort	no sort	

Sort precision	Explanation	Yield mask	Purity mask	Phase mask	Examples
Yield	Always two drops are sorted regardless of contaminating cells. No cells are lost.	32	0	0	sort sort sort sort sort sort sort sort
Purity	If possible two drops are sorted without contamination of non- target cells in the neighboring drop.	32	32	0	sort O O
Single cell	Drop is sorted, if the cell is in the middle of a drop. If the cell lies in the border a sort abort occurs.	0	32	16	Image: solution of the solution of

How to increase the sort quality

- Duplet exclusion
- Influence of target medium during reanalysis
- Multiple thresholds
- Reanalysis of "negative" cells

1. Gating out Duplets

Sort P5 + P2 (Scatter + Fluorescence)

1% Target population

89% Purity (not good enough!)

1. Gating out Duplets

P5+P6+P7+P2 (Scatter + Duplets + Fluorescence) - 1% Target population

1394-5-Bead Pre sort 1394-5-L3 1394-5-presort 3 (x 1,000) 250 P1 SSC-A 00 150 PE-A PE-A P2 P2 10³ 10⁵ 10² 10⁵ 10² 103 104 50 100 150 200 250 (x 1,000) FSC-A FITC-A FITC-A 1394-5-presort 3 1394-5-presort 3 (x 1,000) ĝ 8 99% Purity SSC-A 0 150 FSC-8 100 250 100 150

(x 1,000)

SSC-W

FSC-W

(x 1,000)

2. Influence of target medium

Re-Analysis of sorted events

Control: FCS alone

Reanalysis without FCS

Thresholds can be set for each parameter separately. These can be combined multiple thresholds.

Thresholds can be set for each parameter separately. These can be combined multiple thresholds.

Thresholds can be set for each parameter separately. These can be combined multiple thresholds.

Thresholds can be set for each parameter separately. These can be combined multiple thresholds.

Advantages

- Analysis only of the cells of interest at a faster rate
- Rare cell populations become better visible on the plots
- High throughput sorting
- Isolation of rare cells at high speed with high yield

Disadvantage

 Purity cannot be achieved, because events under the thresholds are not analysed and evaluated for the sort decision

4. Another sort example . . .

Reanalysis: Is it pure ?

Index sort

- Sorting of single cells into single wells.
- Detection of the sorted cells on histograms, plots and in the statistics

# Global Sheet1: Sort Layout_002						
Devi	ice:	Precision:	Target Events:	Save Sort Reports	: Save Conflicts	Index Sorting
96 Well - Fal	lcon 🗸	Single Cell 🗸 🗸	1	🖌 Ask User	✓	
	1	2	3	4	5	6
А	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP : 1
В	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
С	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
D	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
E	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
F	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1	GFP:1
G	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
н	GFP : 1	GFP : 1	GFP : 1	GFP:1	GFP:1	GFP:1
Sort Rate:						
Confl. Cnt:						
Confl. Rate:						
Efficiency:						
Sort Pause 🚔						

Index sort

- Sorting of single cells into single wells.
- Detection of the sorted cells on histograms, plots and in the statistics

	A	B	C
1	Experiment Name	Experiment_028	
2	Specimen Name	Tube 001	
3	Tube Name	Tube_1000-50	
4	Record Date	3/20/2012 12:39	
5	Operator		
6	GUID	fa8e74f2-a681-4dc9-ab98-309db7bb094d	
7	Date Analyzed	5/22/2012 10:40	
8	0 80		
9	Sort Type	Index Sort	
10	Sort Setup	100 micron	
11	Precision	Single Cell	
12	Device	Slide - Frosted End	
13	Yield Mask	0	
14	Purity Mask	32	
15	Phase Mask	16	
16	Well	PE OR FITC FITC-A Mean	PE OR FITC PE-A Mean
17	A1	10,207	39,359
18	A2	9,511	35,718
19	A3	143,557	98
20	81	147,000	91
21	B2	9,481	39,525
22	83	134,630	88
23	C1	9,546	37,958
24	C2	141,284	83
25	C3	132,301	90
26	D1	11,261	41,732
27	D2	9,756	40,026
28	D3	9,684	38,868
29	E1	10,162	40,435
30	E2	9,384	40,557
31	E3	146,927	88
32	F1	9,670	37,902
33	F2	132,584	99
	A N Experiment	0301C Pacultes	

